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Abstract

In this paper, we present METRIC, an environment
for determining memory inefficiencies by examining data
traces. METRIC is designed to alter the performance be-
havior of applications that are mostly constrained by their
latency to resolve memory references. We make four pri-
mary contributions in this paper. First, we present meth-
ods to extract partial data traces from running applications
by observing their memory behavior via dynamic binary
rewriting. Second, we present a methodology to represent
partial data traces in constant space for regular references
through a novel technique for online compression of refer-
ence streams. Third, we employ offline cache simulation to
derive indications about memory performance bottlenecks
from partial data traces. By exploiting summarized memory
metrics, by-reference metrics as well as cache evictor infor-
mation, we can pin-point the sources of performance prob-
lems. Fourth, we demonstrate the ability to derive opportu-
nities for optimizations and assess their benefits in several
experiments resulting in up to 40% lower miss ratios.

1. Introduction

Today, computing speed is often bound by the data path,
i.e., the ability of the memory hierarchy to deliver data in
time to the processor. Contemporary architectures experi-
ence as much as 50% stall cycles for repetitive data-centric
tasks, in the case of server workloads even up to 70% stalls
[25]. Furthermore, processor speeds increase at a rate of
approximately 60% per year while memory latencies are re-
duced by only 7% per year resulting in an increasing gap be-
tween processor speeds and memory latencies. Thus, locat-
ing and eliminating sources of inefficiencies in the memory

�This work was supported in part through the U.S. Department of En-
ergy by the University of California, Lawrence Livermore National Lab-
oratory under subcontracts # B518219 (Mueller) and LLNL LDRD 01-
ERD-043 (McKee) as well as NSF CCR award 0073532 (McKee).

hierarchy can potentially impact application performance to
a significant degree.

Incremental memory hierarchy simulation by capturing
the address trace of an application is a highly accurate
method of isolating problems in the memory hierarchy.
However, a significant problem with this method is the pro-
hibitive overhead of computation and stable storage size re-
quirements associated with capturing thecomplete address
trace of the target, which could potentially consist of mil-
lions of accesses.Partial data traces represent a subset of
the access footprint of the target and may be comparatively
small and less expensive to collect, allowing selective cap-
ture of the most critical data access points in the target.

The objective of this work is to illustrate the use of partial
data traces for incremental memory hierarchy simulation, a
central component of METRIC (MEmory TRacIng without
re-Compiling), a tool we developed to detect memory hi-
erarchy bottlenecks drawing upon our previous experience
with partial data traces [24] and binary rewriting [21]. It
is also influenced by our work with large-scale benchmarks
[30], another example of data-centric computation where
the data sizes exceed cache capacities.

METRIC exploitsdynamic binary rewriting by building
on the instrumentation framework DynInst [2]. Dynamic
binary rewriting refers to the post-link time manipulation of
binary executables, potentially allowing program transfor-
mation even while the target is executing. This approach is
superior to conventional instrumentation, which generally
requires compiler interaction (‘e.g., for profiling) or the in-
clusion of special libraries (e.g., for heap monitoring), since
it obviates the requirements of recompiling or relinking. We
also contribute a cache analysis approach, based on prior
work [22], that lets us process these partial data traces and
results not only in summary information, such as miss ra-
tios, but also reports detailed evictor information for source-
related data structures.

The advantage of dynamic binary rewriting is its abil-
ity to capture memory references of the entire application,
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Figure 1. The METRIC Framework

including library routines and mixed-language application,
such as commonly found in scientific production codes [30].
Another motivation is its ability to cater for input dependen-
cies and application modes,i.e., changes over time in ap-
plication behavior. This work is also influenced by findings
that binary manipulation techniques offer new opportunities
for program transformations, which have been shown to po-
tentially yield performance gains beyond the scope of static
code optimization without profile-guided feedback [1].

The paper is structured as follows. First, the METRIC
framework is introduced. Next, the generation, representa-
tion and compression of partial data traces is discussed in
detail. Then, incremental cache simulation for these par-
tial data traces is presented and metrics to assess memory
throughput are discussed. Finally, we reflect on related
work, discuss future research directions and summarize.

2. The METRIC Framework

One of the central objectives of our work is to capture the
memory behavior through partial data traces represented as
a subset of the data footprint of an application’s execution.
Partial data traces may be comparatively small and can be
collected without prohibitively large overheads during exe-
cution, while complete data traces are expensive to generate
and generally result in very large amounts of data.

This work focuses on the collection of partial address
traces without compiler or linker support,i.e., arbitrary ex-
ecutables can be subject to the generation of traces. We
dynamically modify an executing application by injecting
instrumentation code via binary rewriting. The instrumen-
tation is placed at the point of memory accesses to precisely
capture the data references issued by an application. In ad-
dition, the user may activate or deactivate tracing so that

data reference streams are being generated or being sup-
pressed, respectively. This facility builds the foundation for
capturing partial memory traces. In the following, the soft-
ware infrastructure for partial trace generation is detailed.

The METRIC framework is shown in Figure 1. The user
provides the application process id (PID) and the names of
the target function(s) to the control program. The controller
attaches to the target and retrieves its Control Flow Graph
(CFG). It parses the text section of the target for mem-
ory access instructions,i.e., loads and stores. It uses the
CFG to determine the scope structure of the target,i.e., the
function/loop entry and exit points and the nesting struc-
ture of loops. It then inserts instrumentation at memory
access points and scope change instructions. The instru-
mentation consists of calls to handler functions in a shared
library. The shared library is loaded into the target’s address
space through a special one-shot instrumentation.

Once the instrumentation is complete, the target is al-
lowed to continue. The handler functions in the shared li-
brary get invoked depending on the type of events occurring
in the instrumented program,i.e., load, store, enterscope
and exitscope. The handler functions, in turn, call the com-
pression routine which attempts to detect regular patterns in
the incoming stream.

Once a specified number of events have been logged or
a time threshold has been reached, the instrumentation is
removed, and the target is allowed to continue. The com-
pressed partial event trace is then used offline for incremen-
tal cache simulation. The cache simulator driver reverse
maps addresses to variables in the source, using information
extracted by the controller, and tags accesses to line num-
bers in the source. The cache simulator generates not only
summary level information, but also reports detailed evic-



tor information for source-related data structures, which is
presented to the user, for analysis.

In our approach, we exploit source-related debugging
information embedded in binaries for our analysis. The
application must provide the symbolic information in the
binary (e.g., generally by using the-g flag when compil-
ing). Most modern compilers allow inclusion of symbolic
information even if compiling with full optimizations. In
particular, IBM’s AIX compilers and Intel/K&R’s compiler
for the PowerPC do not suffer in their optimization levels
when debugging information is retained. While some de-
bugging information may suffer in accuracy due to certain
optimizations, memory references, which are subject of our
study, are not affected. Thus, compiling with symbolic in-
formation only increases executable size without significant
degradation of performance.

3. Trace Generation and Compression

The generation of partial address traces provides the ca-
pability to later analyze this trace. We use a modified al-
gorithm based upon our previous work [24] to obtain effi-
cient runtime compression of this event trace. Our mech-
anism is tailored for regular data access patterns, such as
those frequently occurring in tight loops. These patterns
are represented viaregular section descriptors (RSDs) as
a tuple�start address, length, address stride, event type,
start sequence id, sequence id stride,source table index�,
an extension of Havlak’s and Kennedy’s RSDs [13].

The start address, length and
address stride describe the starting address, num-
ber of iterations and strides between successive address
values generated by this pattern. The start position of
the pattern in the overall event stream is indicated by
the start sequence id, and its interleaving is de-
scribed by thesequence id stride. The stride of
RSDs may be an arbitrary function. We restrict ourselves
to constants in this paper since we require fast online
techniques to recognize RSDs. In different contexts, one
may want to consider linear functions or higher order
polynomials. Special access patterns are given by recurring
references to a scalar or the same array element, which
can be represented as RSDs with a constant stride of zero.
The event type distinguishes between reads, writes,
enterscope and exitscope events. For the scope change
events, the startaddress field represents the scope id, and
the address stride is zero. Thesource table index is
an index into a table of (sourcefilename� line number)
tuples. It enables the cache simulator to correlate events
with lines in the source code for user feedback.

Consider the example with a row-major layout shown in
Figure 2. For the sake of simplicity, we assume an offset
of one per array element. The read references to arrayB
occur at offsets n+1, n+2, n+3 (corresponding to references

B[1,1], B[1,2] and B[1,3], respectively), for the
first iteration of the outer loop and a length of n-1 accesses.
The starting sequence id for the first access of theB array
is 3 (since the first three events (seqids start from 0) are
the twoenter scopes for scopes 1 and 2 as well as the
read event forA[i]). For one iteration of the outer loop,
accesses to theB array occur with an interleave distance of
3 in the overall event stream. Hence, the RSD for arrayB
accesses for 1 iteration of the outer loop is:
RSD5 �B+n+1,n-1,1,READ,3,3,3�
Simple RSDs by themselves are not sufficiently expres-

sive to capture the entire stream of accesses of either array
A or B. To address this limitation, we extend this descrip-
tion by power regular section descriptors (PRSDs), which
allow the representation of power sets of RSDs as specified
in Figure 2. A PRSD extends the tuple of an RSD, in that it
may contain a PRSD (or RSD) itself, which represents the
subset. The recursive structure of PRSDs provides a hierar-
chical means to represent recurring patterns with different
start addresses but the same strides and lengths. This is use-
ful for patterns that are usually encountered in nested loops.

The example in Figure 2 illustrates how all read accesses
to array A can be combined as follows:

PRSD1: �start base address = A,
base address shift = 1,
start base sequence id = 2,
base sequence id shift = 3n-1,
PRSD length = n-1,RSD1�

This PRSD represents a total of n-1 repetitions of RSD1
with increments of 1 in addresses and interleaving dis-
tance of 3n-1 between the start of consecutive patterns
in the overall event stream. Events, which cannot be
classified as a part of a pattern, are represented by the
irregular access descriptors (IADs) as: �address, type,
sequence id, source table index�. The sequence id
anchors the event in the overall event stream, and the
source table index gives the (sourcefilename�
line number) mapping of the instruction causing this event.
Thetype indicates event type (i.e enter / exit scope or load/
store). Line numbers are obtained from the binary’s debug
information, as explained earlier. Once a specified num-
ber of events have been logged or a time threshold has been
reached, the instrumentation is removed, and the target is al-
lowed to continue. The compressed description of the event
trace (PRSDs & RSDs) is written to stable storage. Before
we discusses the use of the compressed trace for cache sim-
ulation and user feedback, access ordering is detailed.

4. Ordering of Accesses

The previous section provided compact representations
for regular access patterns within a sequence of data ref-
erences. Data reference streams in numerical codes of-
ten exhibit accesses to multiple sequences in an interleaved



//Declare A[n], B[n][n], init. A w/ 0
for (i = 0; i < n-1; i++)
{ // begin scope_1

for(j = 0; j < n-1; j++)
{ // begin scope_2

A[i] = A[i] + B[i+1][j+1];
} // end scope_2

} // end scope_1

Event Stream:
EnterScope1

EnterScope2
A[0] B[1][1] A[0]
...

ExitScope2
EnterScope2

A[1] B[2][1] A[1]
...

ExitScope2
ExitScope1

RSD: �start addr, length, addr stride,event type,
start seq id,seq id stride,source table index�

PRSD: �base addr, base addr shift, sequence id base,
sequence id shift, PRSD length,RSD�

offsets in A: Stream Representation:
reads: 000... RSD1:�A, n-1,0,READ,2,3,1�

111... RSD2:�A+1, n-1,0,READ,3n+1,3,1�
PRSD1: �A, 1,2,3n-1,n-1,RSD1�

writes: 000... RSD3: �A, n-1, 0,WRITE,4,3,2�
111... RSD4: �A+1, n-1, 0,WRITE,3n+3,3,2�

PRSD2: �A, 1, 4, 3n-1,n-1,RSD3�
offsets in B (reads only):
n+1,n+2... RSD5: �B+n+1, n-1, 1,READ,3,3,3�
2n+1 2n+2.. RSD6: �B+n+1,n-1, 1,READ,3n+2,3,3�

PRSD3: �B+n+1, n-1, 3, 3n-1, n-1,RSD5�
For scope 2 : EnterScope ::
1, 3n, 6n-1... RSD7: �2,n-1,0,ENTER,1,3n-1,0�
For scope 2 : ExitScope ::
3n-1, 6n-2... RSD8: �2,n-1,0,EXIT,3n-1,3n-1,0�

Figure 2. Example: Representing Regular Access Patterns

manner. Consider the example in Figure 2 again: Ac-
cesses to elements of arraysA andB alternate (at differ-
ent frequencies). We provide a compact, flexible repre-
sentation that preserves the order of accesses through a
PRSD, even across data structures. Thesequence id
of RSDs specifies the order of the first occurrence for
a reference. Thesequence id base together with
thesequence id shift determine the interleaving fre-
quencies of different PRSDs. The former determine the
base offset in the data reference stream while the latter spec-
ifies the next occurrence. To simplify the construction of a
data stream from PRSDs, PRSDs are internally organized
as a forest at the highest level, where each tree comprises a
hierarchy of PRSDs with leaves representing RSDs.

The example in Figure 2 depicts the ordering of accesses
by sequence ids of 2, 4, 3, 0 and�� � � for RSDs 1,
3, 5, 7 and 8, respectively. This corresponds to the original
access order of entering the scope, repeatedly reading A and
B as well as writing A before exiting the scope.

The abstraction of a data stream provides a compact rep-
resentation of regular references within applications. Irreg-
ular accesses are represented separately in terms of an IAD,
as explained before.

5. Online Detection of Access Patterns

This section describes our efficient online algorithm to
detect RSDs [24]. This algorithm extracts the accesses cor-
responding to a data structure such as an array, despite the
interleaving of alternate accesses to other data. In order to
detect RSDs, a pool of references is maintained. The refer-
ences lie within thewindow of addresses being scanned for

potential RSDs. As new addresses are referenced, the win-
dow of active addresses advances within a pool. In order
to determine RSDs with constant strides, it is imperative
to compute differences between elements of the pool. To
reduce the computational complexity, we store aset of dif-
ferences along with each reference in the pool. The quest
for locating RSDs reduces to one of finding a sequence of
pool elements in which differences between addresses of
stream elements are identical. The pool consisting of both
the memory references and the calculated differences can
be stored in a statically allocated, two-dimensional array,
which is used in a circular manner by keeping track of two
indices, thestart and theend of the active addresses. The in-
dices advance via modulo arithmetic through the pool. The
pseudo code of the algorithm, omitting the details of aging
and distinguishing access types, is presented in Figure 3.

The worst case complexity of the algorithm is��� �

���, where� is the number of references and� is the win-
dow size, which is a small constant. The innermost condi-
tional results in constant time overhead due to hashing tech-
niques. In practice, we observed linear dependence on� for
benchmarks with regular accesses due to stream extensions.
If a reference extends a (known) stream, then there is no
need to compute differences for it,i.e., by bookkeeping for
the reservation pool, an���� factor that is dominated by
the������ stream table cost. Aging of streams can easily
be achieved by including a tag with each tuple in the stream
table signifying the stream’s age.

We illustrate the application of the algorithm on the ex-
ample in Figure 2. We assumeA andB start at location100
and200, respectively, and are stored in row-major layout.
Let array elements occupy single memory locations. The



WHILE new reference exists DO
Increment column; /* move window */
pool�0��column� := new reference; /* add ref. to pool */
IF reference IN some RSD THEN

Update length of RSD in stream table;
Mark column in pool (shaded in example);

ELSE /* compute and store differences in pool */
FOR i := 1 TO w - 1 DO

pool�i��column� := pool�0��column�-pool�0��column-i�;
END FOR;
found := FALSE; /* find RSDs w/ min. length 3 */
IF there exists i in 1..w-1 AND k in 1..w-1

such that pool�i��column� == pool�k��column-i� THEN
Enter RSD in stream table;
Mark columns 0,i,k in pool (shaded in example);

END IF;
END IF;

END WHILE;

Figure 3. Online Algorithm to Detect RSDs

accesses translate into the following address sequence dis-
tinguished by read(R) and write(W) accesses:
R100 R211 W100 ; R100 R212 W100 ; R100 R213 W100 ; ...
R101 R221 W101 ; R101 R222 W101 ; R101 R223 W101 ; ...
Figure 4 shows the snapshot of the pool as the first eight
references are encountered. The header row shows the ref-
erenced locations. Each column contains thedifference be-
tween the value in the current column header and the value
in a preceding column (see “compute and store differences”
in Figure 3). The particular element used for calculating
thedifference depends on the row in which the difference is
computed and requires matching access types [24]. To cap-
ture RSDs within a window sizew, we need only compute
the differences above the diagonal of the pool table. On see-
ing the thirdR100 (assuming a minimum length of three),
we will identify an RSD by observing the two correspond-
ing differences of0 (circled) in a transitive relationship,
resulting in RSD<100, 3, 0, ...> (shaded). Later
R100s will extend this RSD in length. Similarly, a differ-
ence of1 (circled) for references R211, R212 and R213
results in RSD<211, 3, 1, ...>. We only refer to
the first three components of RSDs that contribute to the al-
gorithm. Details of composing RSDs into PRSDs are also
omitted since they are straight forward.

−111
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111

1 1
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Figure 4. Snapshot of the Reservation Pool

6. Cache Simulation and User Feedback

The compressed event trace is used for off-line incre-
mental cache simulation. We use a modified version of

MHSim [22] as the cache simulator. MHSim was designed
“to identify source program references causing poor cache
utilization, quantify cache conflicts, temporal and spatial
reuse, and correlate simulation results to references and
loops in the source code”.

The original MHSim package used a source-to-source
Fortran translator to instrument data accesses with calls
to the MHSim cache simulation routines. However, this
strategy has several disadvantages. Data accesses specified
in the source code are simulated in their canonical execu-
tion order ignoring any compiler transformations that may
change the order of accesses. Additionally, the compiler
may eliminate several accesses during optimizations (e.g.,
common sub-expressions). We avoid these problems by
instrumenting the application binary instead of the appli-
cation source. The event trace describes the order of ac-
cesses as they occurred during execution. The cache sim-
ulator driver uses the application symbol table to reverse
map the trace addresses to variable identifiers in the source.
It relies on the symbolic information embedded in the bi-
nary, as explained before. Every compressed trace rep-
resentation (i.e., PRSDs, RSDs and IADs) has an associ-
ated “sourcetable index”, which indexes into a table of
(sourcefilename� line number) mappings correlating the
access instruction in the binary to the source level access
that it represents. MHSim is capable of simulating multiple
levels of memory hierarchy. However, we concentrate our
analysis only on the first level of cache (i.e., L1 cache).

For each access point, MHSim provides:

� total hits associated with the reference.

� total misses associated with the reference.

� miss ratio for the reference: basic factor in evaluating
locality of reference.

� temporal reuse fraction for the reference,i.e., the
number of �������� 	
��

����� 	
��
: Useful for determining how

much locality (temporal and spatial) the reference is
providing. This can be checked against the source code
to see how much potential for locality the reference ac-
tually has.

� spatial use, which is computed as��� �����

����� �
��
�

���	
� � 
��������, gives an indication of the frac-
tion of the cache block being referenced before an
eviction occurs. A low spatial use count would indi-
cate that the machine is wasting cycles and/or space
bringing in data that is never referenced.

� evictor references: the identities of the competing ref-
erences, which evicted this reference from the cache,
and their relative counts. Useful for determining which
data objects conflict with each other. The conflict can
be resolved by program transformations or by data re-
organization (e.g., array padding).



Miss Temporal Spatial
File Line Reference SourceRef Hits Misses Ratio Ratio Use
mm.c 63 xz Read 1 xz[k][j] 0 2.50e+05 1.00 no hits 0.171
mm.c 63 xy Read 0 xy[i][k] 2.39e+05 1.10e+04 0.0441 0.854 0.129
mm.c 63 xx Read 2 xx[i][j] 2.50e+05 1.57e+02 0.000628 1.00 0.5
mm.c 63 xx Write 3 xx[i][j] 2.50e+05 0.0 0.0 1.00 no evicts

Figure 5. Per-Reference Cache Statistics for Unoptimized Matrix Multiply
Reference Evictors

File Line Name SourceRef File Line Name SourceRef Count Percent
mm.c 63 xy Read 0 xy[i][k] mm.c 63 xz Read 1 xz[k][j] 10863 100.00

mm.c 63 xz Read 1 xz[k][j] mm.c 63 xz Read 1 xz[k][j] 238150 95.58
mm.c 63 xy Read 0 xy[i][k] 10854 4.36
mm.c 63 xx Read 2 xx[i][j] 149 0.06

mm.c 63 xx Read 2 xx[i][j] mm.c 63 xz Read 1 xz[k][j] 149 100.00

mm.c 63 xx Write 3 xx[i][j] mm.c 63 xz Read 1 xz[k][j] 149 100.00

Figure 6. Evictor Information for Unoptimized Matrix Multiply

7. Experiments

In the following section, we illustrate the use of our
framework to analyze the locality behavior of several test
kernels. We show how the cache simulation results can be
used to detect and isolate problem areas and to derive ap-
propriate program transformations.

The cache configuration for simulation was that of a
MIPS R12000 processor with a total cache size of 32 KB,
32 byte line size and 2-way associativity. A partial data
trace was obtained for each kernel. The compressed trace
was run through the cache simulator to produce memory hi-
erarchy statistics.

7.1. Matrix Multiplication (mm)

We first report on experiments with a matrix multiplica-
tion kernel. The C source code is shown below (assuming
that arrays are row-major).

60 for (i=0; i < MAT_DIM; i++)
61 for (j = 0; j < MAT_DIM; j++)
62 for (k = 0; k < MAT_DIM; k++)
63 xx[i][j]=xy[i][k]*xz[k][j]+xx[i][j];
MAT_DIM = 800
total memory accesses logged = 1000000

The order of accesses is important to distinguish two dif-
ferent source code references to the same array in the report
statistics (for example,xx[i][j] READ andxx[i][j]
WRITE). In the report tables, each distinct reference point
from the machine code is represented by an identifier com-
posed of the name of the data object it refers to, appended
with the type of access (READ/WRITE) and the position of
the reference point in the overall order of accesses in the bi-
nary. (For example, in the untiled matrix multiply kernel’s

machine code, the order of accesses is xy(read), xz(read),
xx(read), xx(write) indicated asxy Read 0, xz Read 1,
xx Read 2 andxx Write 3, respectively.)

We observe the following overall performance:

reads = 750000 temporal hits = 703930
writes = 250000 spatial hits = 34881
hits = 738811 temporal ratio = 0.95279
misses = 261189 spatial ratio = 0.04721
miss ratio = 0.26119 spatial use = 0.16980

The high miss rate (26%) should be the first indication of
concern for the analyst. Interestingly, the spatial use value is
quite low (0.16980). This indicates that the current program
referencing order is inefficient in the sense that most cache
blocks are being evicted before the entire data in the block
is referenced at least once.

Let us explore the cache statistics at a higher level of
detail. Figure 5 depicts the per-reference cache statistics.
Thexz Read 1 performance is immediately striking. All
accesses to the xz array were misses. A look at the source
indicates the cause: The k loop runs over the rows of xz.
By the time reuse of xz data occurs (on next iteration of
the i loop), the data has been flushed from the cache. With
only a single element of the cache line containing xz being
referenced for each iteration of k, the spatial use value is
also low (0.171).

With the xx Read 2 reference, the number of hits is
large, as expected, since thexx[i][j] read is invariant for
the k loop. Even here, however, the spatial use is low (0.5)
indicating premature eviction before all data in the block
was referenced. Thexx Write 3 writes to data locations
already brought into cache by thexx Read 2 reference,
explaining a miss rate of 0.



Miss Temporal Spatial
File Line Reference SourceRef Hits Misses Ratio Ratio Use
mm.c 86 xx Read 2 xx[i][j] 2.41e+05 8.79e+03 0.0352 0.972 0.673
mm.c 86 xy Read 0 xy[i][k] 2.41e+05 8.79e+03 0.0352 0.896 0.732
mm.c 86 xz Read 1 xz[k][j] 2.50e+05 2.88e+02 0.0011 0.999 0.861
mm.c 86 xx Write 3 xx[i][j] 2.50e+05 0.00e+00 0.0 0.989 no evicts

Figure 7. Per-Reference Cache Statistics for Optimized Matrix Multiply

Reference Evictors
File Line Name SourceRef File Line Name SourceRef Count Percent
mm.c 86 xz Read 1 xz[k][j] mm.c 86 xyRead0 xy[i][k] 100 69.44

mm.c 86 xxRead2 xx[i][j] 42 29.17
mm.c 86 xz Read 1 xz[k][j] 2 1.39

mm.c 86 xx Read 2 xx[i][j] mm.c 86 xxRead2 xx[i][j] 4976 60.05
mm.c 86 xyRead0 xy[i][k] 3297 39.79
mm.c 86 xz Read 1 xz[k][j] 14 0.17

mm.c 86 xx Write 3 xx[i][j] mm.c 86 xxRead2 xx[i][j] 4976 60.05
mm.c 86 xyRead0 xy[i][k] 3297 39.79
mm.c 86 xz Read 1 xz[k][j] 14 0.17

mm.c 86 xy Read 0 xy[i][k] mm.c 86 xyRead0 xy[i][k] 5010 59.52
mm.c 86 xxRead2 xx[i][j] 3279 38.96
mm.c 86 xz Read 1 xz[k][j] 128 1.52

Figure 8. Evictor Information for Optimized Matrix Multiply

For the xy Read 0 reference, the number of hits is
quite large, comparable in magnitude to the hits for the
xx Read 2 reference. A surprising feature is the relatively
high temporal ratio (0.854). With the k loop running over
the column dimension of xy and temporal reuse not oc-
curring until the next iteration of j, we would instead ex-
pect the spatial fraction of hits to be high. This means that
thexy Read 0 reference does not experience too much in-
terference from other references over long stretches of ac-
cesses (more than the length of the k loop).

The evictor table for mm is shown in Figure 6. Again, the
xz Read 1 reference performance is unusual. Over 95%
of the time,xz Read 1 interfered with itself, indicating a
capacity problem. Additionally,xz Read 1 was the evic-
tor for all the other references (100% of the time). These
evictions by xz cause premature invalidation of block data
belonging to evicted references leading to low spatial use
(and, thus, low overall cache usage) for these references.

Improving data locality: We have pinpointed the xz ar-
ray references as having the maximum effect on cache per-
formance. We need to change the program structure to re-
duce the access footprint for xz. By interchanging thej
andk loops, we can increase locality for xz (since now the
inner loop runs over the columns of xz), which has the high-
est number of misses. By strip mining thej andk loops,

we can force the temporal reuse to occur at shorter inter-
vals in the overall event stream, especially for arrays xy and
xx. This will reduce the chance of these references having
blocks flushed from the cache before the entire block data
is utilized. The new transformed code with these improve-
ments is shown below.

81 for (jj=0; jj<MAT_DIM; jj += ts)
82 for (kk=0; kk<MAT_DIM; kk += ts)
83 for (i=0; i<MAT_DIM; i++)
84 for (k=kk; k<min(kk+ts,MAT_DIM); k++)
85 for (j=jj; j<min(jj+ts,MAT_DIM); j++)
86 xx[i][j] = xy[i][k] * xz[k][j] +

xx[i][j];
tile size ts = 16;

We observe the following overall performance:

reads = 750000 temporal hits = 947173
writes = 250000 spatial hits = 34955
hits = 982128 temporal ratio = 0.96441
misses = 17872 spatial ratio = 0.03559
miss ratio = 0.01787 spatial use = 0.70394

Figures 7 and 8 show the per-reference cache statistics
and the evictor table for the transformed matrix multiply
code. Figures 9(a-c) contrast the results before and after
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Figure 9. Contrasted Metrics for Matrix Multiply before and after Optimizations

optimization for misses, use and evictor information for
the critical referencexz Read 1, respectively. The over-
all miss ratio has decreased two orders of magnitude from
0.26 to 0.017. The overall spatial use has also improved
greatly from 0.16980 to 0.70394. The greatest improvement
has occurred for thexz Read 1 reference; the number of
hits has gone down from 0 to 2.5e+05, with 99.9% of these
being temporal hits.

Also, for all references, the spatial use values have gone
up, increasing the efficiency of cache usage. The eviction
table in Figure 8 explains why this happened. The num-
ber of evictions for most references has gone down signifi-
cantly, especially for thexz reference from almost 240,000
to less than 200. Evictors for this reference are also depicted
in Figure 9(c). For other references, the evictors, in the ma-
jority of cases, are references to the same array. Overall,
the interference between the xz reference and other refer-
ences has been significantly reduced with a slight overall
increase in interference between other references (e.g., be-
tweenxy Read 0 andxx Read 2).

Consider the pseudo-code for the unoptimized matrix
multiply again. Two references toxx, a read and a write,
are executed on each array element. We performed our ex-
periments by compiling without allocatingxx[i][j] to a
register in the inner loop. While register allocation would
have affected the total number of references forxx, it has a
negligible impact on eviction and miss ratios, as verified by
the low eviction count of 149 in Figure 6. Only one out of
800 array references would have been affected in arraysxy
andxz. In the optimized case, allocatingxy to a register
would have had a similar effect since the cache associativity
was two and both tiled blocks ofxx andxy could co-exist
in cache.

7.2. Erlebacher ADI Integration

The C kernel for the Erlebacher ADI Integration is
shown below. For this kernel, the optimizations possible
(loop interchange and fusion) are visually apparent. How-

ever, we illustrate how the cache results can reveal the need
for these optimizations. The result of the analysis would
be similar in the case of more non-obvious codes benefiting
from the same loop optimizations.

16 for (k = 1; k < N; k++) {
17 for (i = 2; i < N; i++)
18 x[i][k] = x[i][k] -

x[i-1][k]*a[i][k] /b[i-1][k];
19 for (i = 2; i < N; i++)
20 b[i][k] = b[i][k] -

a[i][k] * a[i][k] /b[i-1][k];
21 }
N = 800
total memory accesses logged = 1000000

We observe the following overall performance:

reads = 800000 temporal hits = 351731
writes = 200000 spatial hits = 147768
hits = 499499 temporal ratio = 0.70417
misses = 500501 spatial ratio = 0.29583
miss ratio = 0.50050 spatial use = 0.20181

As in mm, the primary indicator of concern is the miss
ratio — over 50% of the total accesses are misses. Spatial
hits constitute just a third of the overall hits. The low spatial
use value (0.20) indicates the poor efficiency of the current
program order of memory accesses.

The reference-specific statistics are summarized in the
first bar of Figure 10(a). In addition, Figure 10(b) in-
dicates low spatial use for read references in the origi-
nal code. The first five referencesx[i][k], a[i][k],
b[i-1][k],b[i][k] anda[i][k] do not have a sin-
gle hit in the cache. Looking at the source code, a common
pattern is evident among all these reference: the inner loop
(i loop) runs over the rows of these references. Spatially ad-
jacent elements from these arrays, in the same cache block
as these references, are accessed only on the next iteration
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of the k loop, by which time they have been flushed from
the cache. Hence, the spatial use value is low, and spatial
hits are negligible.

The evictor information (not shown due to its size) ac-
tually indicates this problem independent of source code
knowledge. A circular dependency exists for the references
and their evictors within both inner loops. We need to re-
order the accesses so that we can take advantage of spatial
reuse by running the inner loop over the columns (rather
than rows) of these references. The source code indicates
that this is possible without violating data dependencies.

Improving Locality: The loop-interchanged kernel is
shown below.

16 for (i = 2; i < N; i++)
17 for (k = 1; k < N; k++)
18 x[i][k] = x[i][k] -

x[i-1][k] * a[i][k] /b[i-1][k];
19 for (k = 1; k < N; k++)
20 b[i][k] = b[i][k] -

a[i][k] * a[i][k] /b[i-1][k];
21 }

We observe the following overall performance:
reads = 800000 temporal hits = 454867
writes = 200000 spatial hits = 419733
hits = 874600 temporal ratio = 0.52009
misses = 125400 spatial ratio = 0.47991
miss ratio = 0.12540 spatial use = 0.96281

There is significant improvement in the miss ratio: it has
fallen from 50% to less than 13% in the optimized code.
The access efficiency, indicated by the spatial use, has in-
creased drastically from 0.20 to 0.96.

Can we optimize the locality further? To determine this,
we need to look at the reference-specific statistics, sum-

marized for selected references in the second bar of Fig-
ure 10(a). The miss ratio has decreased substantially, espe-
cially for the five references we focused on (x Read 3,
a Read 1, b Read 2, b Read 8, a Read 5) in the
analysis of the unoptimized kernel. However, there still
remain a non-negligible number of misses. If we look at
the source names for the references, we see that there are
a lot of common expressions (especiallya[i][k] and
b[i][k]). Grouping these accesses together would fur-
ther increase locality for the secondary accesses to the same
array (e.g., groupinga Read 1 anda Read 5would elim-
inate misses fora Read 5). Of course, this transformation
would be possible only if no data dependencies are violated.
The new kernel is shown below.

14 for (i = 2; i < N; i++)
15 for (k = 1; k < N; k++) {
16 x[i][k] = x[i][k] -

x[i-1][k] * a[i][k] / b[i-1][k];
17 b[i][k] = b[i][k] -

a[i][k] * a[i][k] / b[i-1][k];
18 }

We observe the following overall performance:

reads = 800000 temporal hits = 549822
writes = 200000 spatial hits = 349849
hits = 899671 temporal ratio = 0.61114
misses = 100329 spatial ratio = 0.38886
miss ratio = 0.10033 spatial use = 0.99798

The miss ratio has decreased from 12.5% to 10%. The
temporal use increased due to grouping of accesses, lead-
ing to approximately 5% increase in temporal hits. As a
side-effect of the reduced number of evictions (directly cor-
related to reduction in total misses), the spatial use has in-
creased to0.997, indicating excellent access efficiency.



The last bar in Figure 10(a) shows the per-reference
statistics for the loop-fused case. The table indicates that
the chief improvement has been in thea Read 5 and
x Read 0 references. Grouping thea[i][k] access for
a Read 5 anda Read 1 caused the misses fora Read 5
to go down to zero. Thex Read 0 reference also decreased
its number of misses by over two orders of magnitude, lead-
ing to a miss ratio of almost 0. This is surprising since the
reuse for thex[i-1][k] element (due to thex[i][k]
read reference) occurs only on the next iteration of the i
loop. The reduction in the overall misses (and, thus, the
evictions) due to grouping seems to have reduced the cross-
interference for thex[i-1][k] reference as a side effect.

Careful analysis of the statistics reveals there is still
potential for improvement. Thex Read 3 (x[i][k])
and x Read 0 (x[i-1][k]) as well as b Read 2
(b[i-1][k]) andb Read 8 (b[i][k]) share temporal
reuse potential on adjacent iterations of the i loop. The
misses forx Read 0 andb Read 8 can be reduced by
tiling (blocking) for the i and k loops. However, we will
not discuss these modifications here.

8. Related Work

The idea of enhancing DynInst by supplying the reg-
ister contents of scratch and non-scratch registers and the
ability to invoke high-level routines through indirect calls
to dynamically loaded shared libraries builds on our prior
work on multi-threaded debugging [26]. The performance
improvements due to inline instrumentation are consistent
with previously published techniques for supporting fast
breakpoints [16]. DynInst uses techniques similar to fast
breakpoints for inline instrumentation but, in contrast to
the original work on fast breakpoints, in a portable fashion.
The invocation of arbitrary routines has also been realized
in a similar fashion in DPCL, a distributed instrumentation
framework on top of DynInst [10].

Regular Section Descriptors represent a particular in-
stance of a common concept in memory optimizations, ei-
ther in software or hardware. For instance, RSDs [13] are
virtually identical to thestream descriptors used at about
the same time in the compiler and memory systems work
inspired by the WM architecture [34].

Atom has been widely used as a binary rewriting tool to
statically insert instrumentation code into application bina-
ries [28]. Dynamic binary rewriting enhances this approach
by its ability to dynamically select place and time for in-
strumentations. This allows the generation of partial ad-
dress traces, for example, for frequently executed regions
of code and a limited number of iterations with a code sec-
tion. In addition, DynInst makes dynamic binary rewriting
a portable approach.

Weikle et al. [31] describe an analytic framework for
evaluating caching systems. Their approach views caches

as filters, and one component of the framework is a trace-
specification notation calledTSpec. TSpec is similar to
the RSDs described here in that it provides a more formal
mechanism by which researchers may communicate with
clarity about the memory references generated by a proces-
sor. The TSpec notation is more complex than RSDs since
it is also the object on which the cache filter operates.

Buck and Hollingsworth performed a simulation study
to pinpoint the hot spots of cache misses based on hardware
support for data trace generation [3]. Hardware counter sup-
port in conjunction with interrupt support on overflow for a
cache miss counter was compared to miss counting in se-
lected memory regions. The former approach is based on
probing to capture data misses at a certain frequency (e.g.,
one out of 50,000 misses). The latter approach performs a
binary search (or n-way search) over the data space to iden-
tify the location of the most frequently occurring misses.
Sampling was reported to yield less accurate results than
searching. The approach based on searching provided ac-
curate results (mostly less than 2% error) for these simu-
lations. Unfortunately, hardware support for these two ap-
proaches is not yet readily available (with the exception of
the IA-64), or there is a lack of documentation for this sup-
port (as confirmed by one vendor). In addition, interrupts on
overflow are imprecise due to instruction-level parallelism.
The data reference causing an interrupt is only known to
be located in “close vicinity” to the interrupted instruc-
tion, which complicates the analysis. Finally, this described
hardware support is not portable. In contrast, our approach
to generating traces is applicable to today’s architectures, is
portable and precise in locating data references, and does
not require the overhead of interrupt handling. Other ap-
proaches to determining the causes of cache misses, such as
informing memory operations, are also based on hardware
support and are presently not supported in contemporary ar-
chitectures [15, 23].

Recent work by Mellor-Crummeyet al. uses source-to-
source translation on HPF to insert instrumentation code
that extracts a data trace of array references. The trace is
later exposed to a cache simulator before miss correlations
are reported [22]. This approach shares its goal of cache
correlation with our work, and we are considering collab-
orative efforts. CProf [19] is a similar tool that relies on
post link-time binary editing through EEL [17, 18] but can-
not handle shared library instrumentation or partial traces.
Lebeck and Wood also applied binary editing to substitute
instructions that reference data in memory with function
calls to simulate caches on-the-fly [20]. Our work differs
in the fundamental approach of rewriting binaries, which
is neither restricted to a special compiler or programming
language, nor does it preclude the analysis of library rou-
tines. Another major difference addresses the overhead of
large data traces inherent to all these approaches. We re-



strict ourselves to partial traces and employ trace compres-
sion to provide compact representations.

Recent work by Chilimbiet al. concentrates on language
support and data layout to better exploit caches [7, 6] as well
as quantitative metrics to assess memory bottlenecks within
the data reference stream [5]. This work introduces the term
whole program stream (WPS) to refer to the data reference
stream, and presents methods to compactly represent the
WPS in a grammatical form. However, the WPS compres-
sion is only applicable to scalar data, while our approach
addresses compact representations for array accesses and
even dynamically allocated objects. Other efforts concen-
trate on access modeling based on whole program traces
[2, 14] using cache miss equations [11] or symbolic refer-
ence analysis at the source level based on Presburger for-
mulas [4]. These approaches involve linear solvers with re-
sponse times on the order of several minutes up to over an
hour. We concentrate our efforts on providing feedback to a
programmer quickly.

A number of approaches address dynamic optimiza-
tions through binary translation and just-in-time compila-
tion techniques for native code [27, 1, 8, 29, 12]. The main
thrust of these techniques is program transformation based
on knowledge about taken execution paths, such as trace
scheduling. The transformations include the reallocation of
registers and loop transformations (such as code motion and
unrolling), to name a few. These efforts are constrained by
the trade-off between the overhead of just-in-time compi-
lation and the potential payoff in execution time savings.
Our approach differs considerably. We allow offline op-
timizations to occur, which do not affect the application’s
performance during compilation, and we rely on injection
of dynamically optimized code thereafter.

SIGMA is a tool using binary rewriting through Aug-
mint6k to analyze memory effects [9]. This is the closest
related work. SIGMA captures full address traces through
binary rewriting. Experimental results show a good correla-
tion to hardware counters for cache metric of entire program
executions. Performance prediction and tuning results are
also reported (subject to manual padding of data structures
in a second compilation pass in response to cache analy-
sis). Their approach differs in that they neither capture par-
tial data traces nor present a concept for such an approach.
Their compression algorithm is inferior since it results in
linear space representations for interleaved patterns, such
as matrices sequentially indexed, whereas constant space
suffices, as demonstrated by our algorithm and Figure 2.
Our cache analysis is more powerful. It reports not only
per-reference metric but also per-reference evictor informa-
tion, which is imperative to infer potential for optimizations.
Subsequently, we are able to apply more sophisticated opti-
mizations, such as tiling and loop transformations.

9. Future Work

METRIC represents the first step towards a tool that al-
ters long-running programs on-the-fly so that their speed in-
creases over its execution time – without any recompilation
or user interaction. We are currently working on the sec-
ond step, the applications of program analysis and subse-
quent dynamic optimizations on the binary. As such, au-
tomated optimization and on-the-fly injection of optimized
code present work in progress. The former requires not only
the reconstruction of the control-flow graph, which is al-
ready available at the binary level, but also the calculation
of data-flow information and the detection of induction vari-
ables in order to infer data dependencies and dependence
distance vectors [32, 33], a prerequisite to determine if cer-
tain program transformations preserve the semantics.

10. Conclusion

In this paper, we demonstrate that dynamic binary rewrit-
ing offers novel opportunities for detecting inefficiencies in
memory reference patterns. Our contributions are a frame-
work to instrument selective load and store instructions on-
the-fly, the generation and compression of partial data traces
as well as the simulation of reference behavior in terms of
caching. By correlating evictor information and aggregated
cache metrics, sources of inefficiencies can be localized.
The analysis allows us to infer the potential for program
transformations. These transformations result in an abso-
lute miss rate reduction of up to 40%. Our results still use
manual code transformations but we are working on an au-
tomated approach to optimize applications on-the-fly, a task
that faces many interesting challenges.
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